Biomaterials 218 (2019) 119360

Novel production of natural bacteriocin via internalization of dextran nanoparticles into probiotics

Biomaterials

materialst

Whee-Soo Kim^a, Geon Goo Han^a, Liang Hong^a, Sang-Kee Kang^b, Mohammadreza Shokouhimehr^c, Yun-Jaie Choi^{a,d,**}, Chong-Su Cho^{a,d,*}

^a Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea

^b Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, Gangwon-do 25354, Republic of Korea

^c Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea

^d Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea

2022.05.19

박재한

Introduction

Enteric pathogens - a major cause of infections in the gastrointestinal track worldwide.

Concern on using antibiotics are increasing.

Use of **probiotics** as alternatives to antibiotics has been growing

Probiotics produce **antimicrobial molecules** (e.g., lactic acid and **bacteriocins**) and enzymes

- Inhibit the colonization of pathogens
- modulate the immune system
- enhance nutrient absorption

Prebiotics treatments enhance probiotics producing bacteriocins

Prebiotics

- generally defined as indigestible food ingredients
- induce the growth or activity of beneficial microorganisms in the gastrointestinal tract
- provide favorable health effects to the host
- Indigestible polysaccharides
- inulin, pullulan and dextran

Introduction

Mammalian cells

- polymeric nanoparticle makes easier endocytosis
- Better overcoming cellular barriers

Microorganisms

- Little size, cell wall
- Internalization of the polymeric nanoparticles is still in an early stage
- producing natural antimicrobial peptides by polymeric nanoparticles as new type of prebiotics will be very challenging

Introduction

Received: 30 May 2017 Accepted: 15 February 2018 Published online: 12 April 2018

Whee-Soo Kim¹, Jun-Yeong Lee¹, Bijay Singh^{2,3}, Sushila Maharjan^{2,3}, Liang Hong¹, Sang-Mok Lee ¹, Lian-Hua Cui⁵, Ki-June Lee¹, GiRak Kim¹, Cheol-Heui Yun^{1,2}, Sang-Kee Kang⁴, Yun-Jaie Choi^{1,2} & Chong-Su Cho^{1,2}

Previous study

- Synthesized phthalyl inulin nanoparticles (PINs) as prebiotics
- demonstrated that PINs were able to be internalized by Pediococcus acidilactici (PA)
- internalization increased pediocin biosynthetic genes
- higher antimicrobial activity against on both Gram-negative and Gram-positive pathogens

Figure 1. Chemical reaction scheme for the synthesis of PDNs

B : SEM

- C: 1H nuclear magnetic resonance (NMR) spectroscopy
- D : Dynamic light scattering(DLS), Electrophoretic light scattering (ELS) spetrophotometer

PDNs

Phythalyl group contents in PDN

✓ PDN synthesis and characterization

В

Figure 2. Analysis of the internalization of dextran and PDNs by PA.

A, B : FITC labeled PDN, dextran – confocal laser microscopy, FACS

Figure 3. Antibacterial activity of PA after internalization of PDNs

A~D : co-culture assay, agar diffusion test

* Coculture assay : 1x10^6 CFU coculture with PA(treated with/wo PDN or dextran)

* Agar diffusion test : PA disc on spreaded pathogen

A. Salmonella Gallinarum

B. *E.coli* K88

C. E.coli O157:H7

D. Listeria monocytogenes

✓ Internalization of PDNs to PA induce antimicrobial properties

Figure 4. Effects of PDNs internalization on PA pediocin production and stress response

A : Bradford assay

B : pediocin activity assay (supernatant diffusion method)

C, D: qRT PCR bacterial RNA

✓ Internalization of PDNs enhance antimicrobial ability through induction of pediocin production

Supplement Figure Physiological effects on mice

Figure 5. Shift in the intestinal microflora of mice

A : 16s rRNA sequencing, PCoA based on unweighted UniFrac distances B : OTU picking

✓ Antimicrobial activity induced by PDN administration may prevent reduction in the diversity of microflora

Figure 6. Microbial analysis in a murine model

 ✓ increased production of pediocin may have excluded pathogens from the intestines of mice

- Confirm internalization of PDN into PA
- First study to report internalization of **dextran nanoparticles** by probiotics can enhance the production of antimicrobial peptides in vitro
- Internalization of PDNs into probiotics can modulate the metabolism of probiotics
- enhance antimicrobial activities against pathogens in vitro.
- Probiotics with enhanced antimicrobial activity could prevent pathogenic gut infections
- Change composition of the gut microbiome in vivo
- Study suggests the combination of prebiotic polymeric nanoparticles with probiotics can be

used as an alternative to antibiotics

Study about how nanoparticles internalize into bacteria

- There are many previous studies about probiotics and synbiotics on inflammation associated disease
- There are few research about Nanoparticle internalization into probiotics
- This was a research that Nano particles may act better in modulating probiotics
- Introduction of Nano particle could enhance the immunomodulatory ability of probiotics